Back to Knowledge Hub
AI PM Templates

AI Sprint Planning Template: Structure AI Work Effectively

A comprehensive sprint planning template designed for AI/ML teams. Includes capacity planning for exploratory work, spike allocation, technical debt management, and AI-specific ceremonies.

By Institute of AI PM10 min readDecember 16, 2025

AI development doesn't fit neatly into traditional sprint frameworks. Model training can take days, experiments yield unexpected results, and "done" is harder to define when dealing with probabilistic outputs. This template helps you structure AI work while preserving the flexibility ML teams need.

Why AI Sprints Are Different

Traditional vs. AI Sprint Challenges

Traditional Software

  • • Predictable task duration
  • • Clear definition of done
  • • Deterministic outputs
  • • Linear progress

AI/ML Development

  • • High uncertainty in timelines
  • • "Good enough" thresholds
  • • Probabilistic outcomes
  • • Iterative experimentation

Sprint Planning Template

Copy and paste this template for your AI sprint planning sessions:

╔══════════════════════════════════════════════════════════════╗
║              AI SPRINT PLANNING DOCUMENT                      ║
╠══════════════════════════════════════════════════════════════╣

SPRINT OVERVIEW
═══════════════════════════════════════════════════════════════
Sprint Number:        [e.g., Sprint 24]
Sprint Dates:         [Start Date] - [End Date]
Sprint Duration:      [e.g., 2 weeks]
Sprint Goal:          [One sentence describing what success looks like]

TEAM CAPACITY
═══════════════════════════════════════════════════════════════
Team Member          Role              Available Days    Notes
─────────────────────────────────────────────────────────────
[Name]               ML Engineer       [X] days          [PTO, etc.]
[Name]               ML Engineer       [X] days
[Name]               Data Engineer     [X] days
[Name]               PM                [X] days
[Name]               Designer          [X] days
─────────────────────────────────────────────────────────────
Total Capacity:      [X] person-days

CAPACITY ALLOCATION (AI-SPECIFIC)
═══════════════════════════════════════════════════════════════
Category                    Allocation    Person-Days
─────────────────────────────────────────────────────────────
Planned Feature Work        50-60%        [X] days
Experimentation/Spikes      20-25%        [X] days
Technical Debt/MLOps        10-15%        [X] days
Buffer for Unknowns         10-15%        [X] days
─────────────────────────────────────────────────────────────
Total:                      100%          [X] days

SPRINT BACKLOG
═══════════════════════════════════════════════════════════════

COMMITTED WORK (High Confidence)
────────────────────────────────────────────────────────────────
ID      Story                           Points    Owner    Status
────────────────────────────────────────────────────────────────
AI-101  [Feature/task description]      [X]       [Name]   To Do
AI-102  [Feature/task description]      [X]       [Name]   To Do
AI-103  [Feature/task description]      [X]       [Name]   To Do

STRETCH GOALS (If Capacity Allows)
────────────────────────────────────────────────────────────────
AI-201  [Feature/task description]      [X]       [Name]   To Do
AI-202  [Feature/task description]      [X]       [Name]   To Do

ACTIVE EXPERIMENTS
═══════════════════════════════════════════════════════════════
Exp ID    Hypothesis                    Success Criteria    Time-box
─────────────────────────────────────────────────────────────
EXP-01    [If we..., then...]          [Metric > X]        [X] days
EXP-02    [If we..., then...]          [Metric > X]        [X] days

SPIKES & RESEARCH
═══════════════════════════════════════════════════════════════
Spike ID   Question to Answer           Output Expected     Time-box
─────────────────────────────────────────────────────────────
SPK-01     [Technical question]         [Doc/POC/Decision]  [X] days
SPK-02     [Technical question]         [Doc/POC/Decision]  [X] days

MODEL/DATA DEPENDENCIES
═══════════════════════════════════════════════════════════════
Dependency                  Owner         Status       ETA
─────────────────────────────────────────────────────────────
[e.g., Training data v2]    [Name]        [Status]     [Date]
[e.g., GPU cluster access]  [Name]        [Status]     [Date]
[e.g., API rate limits]     [Name]        [Status]     [Date]

RISKS & BLOCKERS
═══════════════════════════════════════════════════════════════
Risk                        Likelihood    Impact    Mitigation
─────────────────────────────────────────────────────────────
[Risk description]          H/M/L         H/M/L     [Plan]
[Risk description]          H/M/L         H/M/L     [Plan]

DEFINITION OF DONE (AI-Specific)
═══════════════════════════════════════════════════════════════
[ ] Model meets accuracy threshold ([X]% on test set)
[ ] Latency within SLA ([X]ms p95)
[ ] Evaluation metrics logged to experiment tracker
[ ] Model registered in model registry
[ ] A/B test framework integrated (if applicable)
[ ] Monitoring dashboards updated
[ ] Rollback procedure documented
[ ] Code reviewed and merged
[ ] Documentation updated

CARRYOVER FROM LAST SPRINT
═══════════════════════════════════════════════════════════════
ID      Story                    Original Points    Remaining
─────────────────────────────────────────────────────────────
[ID]    [Description]            [X]                [X]

NOTES & DECISIONS
═══════════════════════════════════════════════════════════════
• [Key decision or note from planning]
• [Key decision or note from planning]

╚══════════════════════════════════════════════════════════════╝

Capacity Planning for AI Teams

The 50/25/15/10 Rule for AI Sprints

50%

Planned Feature Work

Committed deliverables with high confidence. Features that build on proven approaches.

25%

Experimentation & Spikes

Time-boxed exploration. Testing new architectures, data sources, or approaches.

15%

Technical Debt & MLOps

Pipeline improvements, monitoring, model registry, retraining automation.

10%

Buffer for Unknowns

Model debugging, unexpected data issues, production incidents.

AI Story Point Estimation

Traditional story points don't work well for AI work. Use this modified scale that accounts for uncertainty:

AI STORY POINT SCALE
═══════════════════════════════════════════════════════════════

Points    Traditional              AI Interpretation
─────────────────────────────────────────────────────────────
1         Few hours               Well-understood, deterministic task
                                  (e.g., update config, fix bug)

2         Half day                Standard task with known approach
                                  (e.g., add metric, update pipeline)

3         1 day                   Moderate complexity, proven pattern
                                  (e.g., retrain with new data)

5         2-3 days                Some uncertainty, may need iteration
                                  (e.g., tune hyperparameters)

8         1 week                  Significant uncertainty, new territory
                                  (e.g., test new architecture)

13        1-2 weeks               High uncertainty, research required
                                  (e.g., solve novel problem)

21        DON'T USE               Break this down further
                                  Story is too large/uncertain

ESTIMATION MULTIPLIERS FOR AI WORK
─────────────────────────────────────────────────────────────
Factor                                    Multiplier
─────────────────────────────────────────────────────────────
New model architecture                    1.5x
New data source                           1.3x
Production deployment (first time)        1.5x
Real-time inference requirement           1.3x
Regulatory/compliance involved            1.5x
Cross-team dependency                     1.2x

AI-Specific Sprint Ceremonies

Recommended AI Team Ceremonies

Experiment Review (Weekly, 30 min)

Review active experiments, share learnings, decide to continue/pivot/stop. Not a status update - focus on insights and decisions.

Model Health Check (Weekly, 15 min)

Review production model metrics, drift alerts, error rates. Quick triage of any degradation.

Data Quality Standup (2x/week, 10 min)

Quick check on data pipeline health, new data availability, labeling progress.

ML Demo Day (End of Sprint, 45 min)

Show experiments (successful AND failed), model improvements, new capabilities. Celebrate learning, not just shipping.

AI User Story Templates

Use these templates to write AI-specific user stories:

AI USER STORY TEMPLATES
═══════════════════════════════════════════════════════════════

MODEL IMPROVEMENT STORY
─────────────────────────────────────────────────────────────
Title: Improve [model name] [metric] from [X] to [Y]

As a [user type],
I want [the model to perform better at X],
So that [business outcome].

Acceptance Criteria:
• Model achieves [metric] >= [threshold] on [test set]
• Latency remains under [X]ms p95
• No regression on [other important metrics]
• A/B test shows [X]% improvement in [business metric]

Technical Notes:
• Current baseline: [metric value]
• Proposed approach: [brief description]
• Data requirements: [new data needed]
• Estimated training time: [X] hours

─────────────────────────────────────────────────────────────

EXPERIMENT STORY
─────────────────────────────────────────────────────────────
Title: [EXP] Test [hypothesis]

Hypothesis:
If we [change/approach], then [expected outcome] because [reasoning].

Success Criteria:
• Primary: [Metric] improves by [X]%
• Secondary: [Other metrics] don't regress

Time-box: [X] days
Output: Decision document with recommendation

Experiment Design:
• Control: [Current approach]
• Treatment: [New approach]
• Sample size: [N]
• Duration: [X] days

─────────────────────────────────────────────────────────────

DATA PIPELINE STORY
─────────────────────────────────────────────────────────────
Title: [DATA] Add [data source] to [pipeline]

As a ML engineer,
I want [new data integrated into pipeline],
So that [models can use this signal].

Acceptance Criteria:
• Data flows to [destination] within [X] hours of generation
• Schema validation passes
• Data quality checks: [list checks]
• Backfill completed for [date range]
• Documentation updated

─────────────────────────────────────────────────────────────

SPIKE STORY
─────────────────────────────────────────────────────────────
Title: [SPIKE] Investigate [question]

Question to Answer:
[Clear, specific technical question]

Output Expected:
• [ ] Decision document
• [ ] Proof of concept
• [ ] Architecture proposal
• [ ] Go/no-go recommendation

Time-box: [X] days (STRICT)

Out of Scope:
• Production-ready implementation
• Full testing
• Documentation beyond findings

Common AI Sprint Planning Mistakes

Mistake: Treating experiments like features

Problem: Committing to ship experiment results creates pressure to confirm hypotheses.

Fix: Commit to running the experiment, not to the outcome. Success = learning.

Mistake: No buffer for model debugging

Problem: Models fail in unexpected ways. 100% planned capacity = guaranteed overcommitment.

Fix: Always reserve 10-15% for unknowns. Use it for stretch goals if not needed.

Mistake: Ignoring data dependencies

Problem: Model work blocked waiting for data that was "supposed to be ready."

Fix: Explicitly list data dependencies with owners and track status daily.

Mistake: Vague acceptance criteria

Problem: "Improve model accuracy" leads to endless iteration with no clear done.

Fix: Specific thresholds: "Achieve 85% precision on test set v2.1"

Mistake: Skipping MLOps investment

Problem: Technical debt accumulates, making every sprint slower.

Fix: Dedicate 15% of every sprint to MLOps improvements. Non-negotiable.

AI Sprint Retrospective Questions

AI SPRINT RETROSPECTIVE TEMPLATE
═══════════════════════════════════════════════════════════════

WHAT WENT WELL
─────────────────────────────────────────────────────────────
• [Celebration/win]
• [Effective practice to continue]

WHAT DIDN'T GO WELL
─────────────────────────────────────────────────────────────
• [Challenge/blocker]
• [Process that needs improvement]

AI-SPECIFIC REFLECTION
─────────────────────────────────────────────────────────────
1. Did our experiments yield useful learnings (even if negative)?
2. Were our model performance estimates accurate?
3. Did we encounter unexpected data issues?
4. Was our buffer allocation appropriate?
5. Did MLOps debt slow us down?

VELOCITY ANALYSIS
─────────────────────────────────────────────────────────────
Committed Points:         [X]
Completed Points:         [X]
Experiment Success Rate:  [X/Y] yielded actionable insights
Carryover Reason:         [Why items weren't completed]

ACTION ITEMS
─────────────────────────────────────────────────────────────
[ ] [Specific improvement] - Owner: [Name] - Due: [Date]
[ ] [Specific improvement] - Owner: [Name] - Due: [Date]

Related Templates