AI releases are fundamentally different from traditional software launches. Model behavior can be unpredictable, edge cases emerge at scale, and user trust takes time to build. A well-structured release plan is essential for shipping AI features that delight users while managing risk.
Why AI Releases Are Different
Unique AI Release Challenges
Behavior Unpredictability
Models may respond unexpectedly to novel inputs not seen in testing
Scale-Dependent Issues
Problems often only emerge at production scale with real users
Trust Building
Users need time to calibrate expectations with AI capabilities
Feedback Loops
Early usage data is critical for tuning and improvement
Copy and customize this template for your AI feature releases:
╔══════════════════════════════════════════════════════════════════╗
║ AI RELEASE PLAN ║
╠══════════════════════════════════════════════════════════════════╣
RELEASE OVERVIEW
────────────────────────────────────────────────────────────────────
Feature Name: [Name of AI feature]
Release Version: [v1.0.0]
Target Release Date: [YYYY-MM-DD]
Release Owner: [PM Name]
Tech Lead: [Engineering Lead Name]
Release Type: [ ] New Feature [ ] Enhancement [ ] Model Update
EXECUTIVE SUMMARY
────────────────────────────────────────────────────────────────────
One-Liner:
[Single sentence describing what this release delivers]
Business Impact:
[Expected outcome: revenue, efficiency, user satisfaction]
Key Risk:
[Primary risk and mitigation approach]
RELEASE SCOPE
────────────────────────────────────────────────────────────────────
In Scope:
• [Feature/capability 1]
• [Feature/capability 2]
• [Feature/capability 3]
Out of Scope:
• [Explicitly excluded item 1]
• [Explicitly excluded item 2]
Dependencies:
• [Upstream dependency 1] - Status: [Ready/Pending]
• [Upstream dependency 2] - Status: [Ready/Pending]
AI/ML SPECIFICS
────────────────────────────────────────────────────────────────────
Model Details:
Model Name/Version: [e.g., gpt-4-turbo / custom-v2.3]
Provider: [OpenAI / Anthropic / Internal]
Training Data Cutoff: [Date]
Fine-tuning Applied: [ ] Yes [ ] No
Performance Baselines:
Accuracy/Quality: [Target: XX% | Current: XX%]
Latency P50: [Target: XXms | Current: XXms]
Latency P99: [Target: XXms | Current: XXms]
Cost per Request: [Target: $X.XX | Current: $X.XX]
Safety Validation:
[ ] Prompt injection testing completed
[ ] Harmful content filters validated
[ ] PII handling reviewed
[ ] Bias testing completed
[ ] Edge case library tested
╠══════════════════════════════════════════════════════════════════╣
║ ROLLOUT STRATEGY ║
╠══════════════════════════════════════════════════════════════════╣
PHASE 1: INTERNAL DOGFOODING
────────────────────────────────────────────────────────────────────
Duration: [X days]
Audience: Internal employees only
Traffic: 100% of internal users
Goal: Catch obvious issues, gather initial feedback
Entry Criteria:
[ ] All unit tests passing
[ ] Integration tests passing
[ ] Security review approved
[ ] Model performance meets baseline
Exit Criteria:
[ ] No P0/P1 bugs discovered
[ ] Internal NPS > [X]
[ ] No safety incidents
[ ] Latency within targets
PHASE 2: LIMITED BETA
────────────────────────────────────────────────────────────────────
Duration: [X days]
Audience: [Beta users / Power users / Specific segment]
Traffic: [X%] of target audience
Goal: Validate with real users, stress test at scale
Entry Criteria:
[ ] Phase 1 exit criteria met
[ ] Monitoring dashboards live
[ ] On-call rotation scheduled
[ ] Rollback tested and verified
Exit Criteria:
[ ] Quality metrics stable for [X] days
[ ] No degradation in guardrail metrics
[ ] User feedback sentiment > [X]%
[ ] Support ticket volume within [X]% of baseline
PHASE 3: GRADUAL ROLLOUT
────────────────────────────────────────────────────────────────────
Schedule:
Day 1: [10%] traffic
Day 3: [25%] traffic (if metrics stable)
Day 7: [50%] traffic (if metrics stable)
Day 10: [75%] traffic (if metrics stable)
Day 14: [100%] traffic (if metrics stable)
Rollout Segments:
Priority 1: [Segment most likely to benefit]
Priority 2: [General users]
Priority 3: [Sensitive/high-value accounts - last]
Entry Criteria:
[ ] Phase 2 exit criteria met
[ ] Stakeholder sign-off received
[ ] Customer support trained
[ ] Documentation published
Exit Criteria:
[ ] 100% traffic served
[ ] All metrics within targets for [X] days
[ ] No open P0/P1 issues
[ ] Post-release review completed
╠══════════════════════════════════════════════════════════════════╣
║ MONITORING & ALERTING ║
╠══════════════════════════════════════════════════════════════════╣
REAL-TIME DASHBOARDS
────────────────────────────────────────────────────────────────────
Dashboard Links:
Main Dashboard: [URL]
Model Metrics: [URL]
Error Tracking: [URL]
Cost Monitoring: [URL]
KEY METRICS TO WATCH
────────────────────────────────────────────────────────────────────
Quality Metrics:
┌─────────────────────┬──────────┬──────────┬───────────┐
│ Metric │ Baseline │ Target │ Alert At │
├─────────────────────┼──────────┼──────────┼───────────┤
│ Task Success Rate │ XX% │ XX% │ < XX% │
│ User Rating (1-5) │ X.X │ X.X │ < X.X │
│ Regeneration Rate │ XX% │ XX% │ > XX% │
│ Completion Rate │ XX% │ XX% │ < XX% │
└─────────────────────┴──────────┴──────────┴───────────┘
Operational Metrics:
┌─────────────────────┬──────────┬──────────┬───────────┐
│ Metric │ Baseline │ Target │ Alert At │
├─────────────────────┼──────────┼──────────┼───────────┤
│ Error Rate │ X.X% │ X.X% │ > X.X% │
│ Latency P50 │ XXXms │ XXXms │ > XXXms │
│ Latency P99 │ XXXms │ XXXms │ > XXXms │
│ Timeout Rate │ X.X% │ X.X% │ > X.X% │
└─────────────────────┴──────────┴──────────┴───────────┘
Safety Metrics:
┌─────────────────────┬──────────┬──────────┬───────────┐
│ Metric │ Baseline │ Target │ Alert At │
├─────────────────────┼──────────┼──────────┼───────────┤
│ Content Filter Rate │ X.X% │ X.X% │ > X.X% │
│ User Reports │ X/day │ X/day │ > X/day │
│ Safety Incidents │ 0 │ 0 │ > 0 │
└─────────────────────┴──────────┴──────────┴───────────┘
ALERT ESCALATION
────────────────────────────────────────────────────────────────────
Severity Levels:
P0 (Critical): Service down, safety incident, data breach
Response: Immediate page, rollback within 15 min
Escalate: VP Engineering, Legal (if safety/data)
P1 (High): Major quality degradation, >50% of users affected
Response: Page on-call, investigate within 30 min
Escalate: Engineering Manager, PM
P2 (Medium): Noticeable quality drop, 10-50% users affected
Response: Slack alert, investigate within 2 hours
Escalate: Tech Lead
P3 (Low): Minor issues, <10% users affected
Response: Ticket created, next business day
Escalate: N/A
╠══════════════════════════════════════════════════════════════════╣
║ GO/NO-GO CRITERIA ║
╠══════════════════════════════════════════════════════════════════╣
PRE-RELEASE CHECKLIST
────────────────────────────────────────────────────────────────────
Technical Readiness:
[ ] All tests passing (unit, integration, e2e)
[ ] Performance benchmarks met
[ ] Security review completed
[ ] Load testing completed
[ ] Rollback procedure tested
AI/ML Readiness:
[ ] Model evaluation metrics approved
[ ] Safety testing completed
[ ] Bias testing completed
[ ] Prompt versioning in place
[ ] Fallback behavior defined
Operational Readiness:
[ ] Monitoring dashboards live
[ ] Alerts configured and tested
[ ] On-call schedule confirmed
[ ] Runbooks documented
[ ] Incident response plan reviewed
Business Readiness:
[ ] Legal/compliance approval (if needed)
[ ] Customer support trained
[ ] User documentation published
[ ] Marketing/comms aligned
[ ] Pricing/billing verified (if applicable)
GO/NO-GO DECISION
────────────────────────────────────────────────────────────────────
Decision Date: [YYYY-MM-DD]
Decision Time: [HH:MM timezone]
Decision Forum: [Meeting name/Slack channel]
Required Approvers:
[ ] Product Manager: [Name] _______________
[ ] Engineering Lead: [Name] _______________
[ ] QA Lead: [Name] _______________
[ ] Security (if req): [Name] _______________
[ ] Legal (if req): [Name] _______________
Go Criteria (ALL must be true):
[ ] Pre-release checklist 100% complete
[ ] No open P0 or P1 issues
[ ] All required approvers signed off
[ ] Rollback procedure verified
No-Go Triggers (ANY blocks release):
[ ] Open P0 or P1 bug
[ ] Safety testing failures
[ ] Missing required approval
[ ] Critical dependency not ready
╠══════════════════════════════════════════════════════════════════╣
║ STAKEHOLDER COMMUNICATION ║
╠══════════════════════════════════════════════════════════════════╣
COMMUNICATION TIMELINE
────────────────────────────────────────────────────────────────────
T-14 days: Internal announcement to all-hands
T-7 days: Customer support training
T-3 days: Beta user preview email
T-1 day: Final go/no-go decision
T-0: Release announcement
T+1 day: Metrics check-in (internal)
T+3 days: Early feedback summary
T+7 days: Week 1 retrospective
T+14 days: Full release retrospective
STAKEHOLDER NOTIFICATION
────────────────────────────────────────────────────────────────────
Stakeholder Groups:
┌─────────────────────┬─────────────────┬─────────────────┐
│ Audience │ Channel │ Owner │
├─────────────────────┼─────────────────┼─────────────────┤
│ Executive Team │ Email + Slack │ [PM] │
│ Engineering │ Slack + JIRA │ [Tech Lead] │
│ Customer Support │ Training + Docs │ [PM] │
│ Sales │ Email + Demo │ [PM] │
│ Marketing │ Brief + Assets │ [PM] │
│ External Users │ In-app + Email │ [Marketing] │
└─────────────────────┴─────────────────┴─────────────────┘
MESSAGING TEMPLATES
────────────────────────────────────────────────────────────────────
Internal Announcement:
"We're launching [Feature Name] on [Date]. This AI-powered feature
will [key benefit]. During the rollout, please [action needed].
Report any issues to [channel]."
Customer Announcement:
"Introducing [Feature Name]: [One-line benefit]. Try it now in
[location]. We'd love your feedback—[how to provide feedback]."
Incident Communication:
"We're aware of [issue description] affecting [Feature Name].
Our team is investigating. Current status: [status].
ETA for resolution: [time]. Updates: [channel]."
╠══════════════════════════════════════════════════════════════════╣
║ ROLLBACK PLAN ║
╠══════════════════════════════════════════════════════════════════╣
ROLLBACK TRIGGERS
────────────────────────────────────────────────────────────────────
Automatic Rollback (system-triggered):
• Error rate exceeds [X]% for [Y] minutes
• Latency P99 exceeds [X]ms for [Y] minutes
• Safety incident detected
Manual Rollback (human decision):
• Quality metrics below threshold for [X] hours
• Customer escalations exceed [X] per hour
• Executive decision
ROLLBACK PROCEDURE
────────────────────────────────────────────────────────────────────
Step 1: Confirm rollback decision
Approver: [On-call engineer or PM]
Step 2: Execute rollback
Command: [rollback command or procedure]
Expected Duration: [X minutes]
Step 3: Verify rollback
Check: [verification steps]
Dashboard: [URL]
Step 4: Communicate
Internal: Slack message to [channel]
External: [If needed, user-facing message]
Step 5: Document
Create incident ticket
Schedule post-mortem
ROLLBACK CONTACTS
────────────────────────────────────────────────────────────────────
Primary On-Call: [Name] - [Phone] - [Slack]
Secondary On-Call: [Name] - [Phone] - [Slack]
Escalation: [Name] - [Phone] - [Slack]
╠══════════════════════════════════════════════════════════════════╣
║ POST-RELEASE ║
╠══════════════════════════════════════════════════════════════════╣
SUCCESS METRICS (measured at T+30 days)
────────────────────────────────────────────────────────────────────
Business Metrics:
• [Metric 1]: Target [X], Actual [___]
• [Metric 2]: Target [X], Actual [___]
User Metrics:
• Adoption Rate: Target [X%], Actual [___]
• User Satisfaction: Target [X], Actual [___]
Technical Metrics:
• Uptime: Target [X%], Actual [___]
• Cost per Request: Target [$X], Actual [___]
RETROSPECTIVE
────────────────────────────────────────────────────────────────────
Scheduled Date: [T+14 days]
Attendees: [List of team members]
Document: [Link to retro doc]
Retro Topics:
• What went well?
• What could be improved?
• Action items for next release
╚══════════════════════════════════════════════════════════════════╝
Rollout Strategy Deep Dive
Choosing Your Rollout Approach
Percentage Rollout
Best for: Most AI features
Gradually increase traffic from 1% → 10% → 50% → 100%
Feature Flag
Best for: Experimental features
Enable/disable instantly without deployment
Segment Rollout
Best for: High-stakes releases
Internal → Beta → Power users → All users
Geographic Rollout
Best for: Localization-sensitive AI
Start in one region, expand to others
Recommended Rollout Timeline for AI Features
CONSERVATIVE ROLLOUT (Recommended for New AI Features)
────────────────────────────────────────────────────────────────────
Week 1: Internal Only
• Day 1-2: Engineering team testing
• Day 3-5: All internal employees
• Day 5-7: Fix issues, iterate
Week 2: Limited Beta
• Day 8-10: 1% of users (opt-in beta)
• Day 11-14: 5% of users
• Monitor closely, gather feedback
Week 3: Gradual Expansion
• Day 15-17: 10% of users
• Day 18-21: 25% of users
Week 4: Majority Rollout
• Day 22-24: 50% of users
• Day 25-28: 75% of users
Week 5: Full Launch
• Day 29-30: 100% of users
• Post-launch monitoring
AGGRESSIVE ROLLOUT (For Low-Risk Model Updates)
────────────────────────────────────────────────────────────────────
Day 1: Internal dogfooding
Day 2: 10% of users
Day 3: 25% of users
Day 4: 50% of users
Day 5: 100% of users
Stakeholder Communication Best Practices
Communication Cadence by Phase
Pre-Release (T-14 to T-1)
- Weekly status updates to stakeholders
- Daily standups with release team
- Go/no-go meeting at T-1
During Rollout (T-0 to T+14)
- Daily metrics summary to core team
- Every-other-day updates to stakeholders
- Immediate escalation for any incidents
Post-Release (T+14 onward)
- Week 2 retrospective with full team
- Month 1 impact report to executives
- Ongoing weekly metrics in team dashboard
Set up monitoring checkpoints at key intervals during your rollout. Here's what to check and when:
MONITORING CHECKPOINT SCHEDULE
────────────────────────────────────────────────────────────────────
T+1 HOUR: Initial Health Check
────────────────────────────────────────────────────────────────────
[ ] Service is responding (no 5xx errors)
[ ] Latency within expected range
[ ] No safety alerts triggered
[ ] Basic functionality verified
T+4 HOURS: Early Signal Check
────────────────────────────────────────────────────────────────────
[ ] Error rate compared to baseline
[ ] User engagement metrics (if applicable)
[ ] Any user-reported issues?
[ ] Cost tracking on expected trajectory
T+24 HOURS: Day 1 Review
────────────────────────────────────────────────────────────────────
[ ] Quality metrics (task success, ratings)
[ ] Operational metrics (latency, errors)
[ ] Safety metrics (filters, reports)
[ ] User feedback sentiment
[ ] Support ticket volume
Decision: Continue rollout / Pause / Rollback
T+72 HOURS: Day 3 Assessment
────────────────────────────────────────────────────────────────────
[ ] Trend analysis (improving/stable/declining)
[ ] Edge cases discovered
[ ] User adoption patterns
[ ] Cost vs. projection
Decision: Expand to next percentage / Hold / Rollback
T+7 DAYS: Week 1 Retrospective
────────────────────────────────────────────────────────────────────
[ ] Full metrics review
[ ] User feedback synthesis
[ ] Technical issues summary
[ ] Lessons learned
Decision: Proceed to full rollout / Iterate / Pause
Common AI Release Mistakes
✗Skipping internal dogfooding
Always test with internal users first—they'll catch issues before customers do.
✗Rolling out too fast
AI issues often take days to surface. Allow time between percentage increases.
✗Not testing rollback
Always verify your rollback works before you need it. Test in staging first.
✗Ignoring qualitative feedback
Metrics won't catch everything. Read user feedback and support tickets daily.
✗Launching before support is ready
Train customer support before launch. They need to understand AI limitations.
✗No clear go/no-go criteria
Define success/failure thresholds upfront to avoid last-minute debates.
Release Day Quick Reference
RELEASE DAY CHECKLIST
────────────────────────────────────────────────────────────────────
MORNING (Pre-Release)
[ ] Final go/no-go confirmation
[ ] On-call team standing by
[ ] Monitoring dashboards open
[ ] Stakeholders notified of timing
RELEASE EXECUTION
[ ] Deploy to initial percentage
[ ] Verify feature is live
[ ] Check for immediate errors
[ ] Send "Release started" notification
FIRST HOUR
[ ] Monitor error rates
[ ] Check latency metrics
[ ] Review initial user interactions
[ ] Respond to any alerts
END OF DAY
[ ] Send metrics summary
[ ] Document any issues
[ ] Confirm overnight monitoring
[ ] Schedule next day check-in
CONTACTS
────────────────────────────────────────────────────────────────────
On-Call: [Name] - [Phone]
PM: [Name] - [Slack]
Tech Lead: [Name] - [Slack]
Escalation: [Name] - [Phone]
CRITICAL COMMANDS
────────────────────────────────────────────────────────────────────
Pause Rollout: [command or button location]
Rollback: [command or button location]
Emergency Page: [paging command or number]
Master AI Product Management
Learn how to plan and execute AI releases like a pro. Join our comprehensive course taught by industry experts.
Explore the Course